

MATERIALS & SAFETY - R&D

TR 31361

page 1 of 11

FORM C TYPE TEST VERIFICATION REPORT

Type Approval and Manufacturer declaration of compliance with the requirements of G98/NI.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the Micro-generator is Fully Type Tested and already registered with the ENA Type Test Verification Report Register, the Installation Document should include the Manufacturer's Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to NIE Networks, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98/NI.

Manufacturer's reference number		Primo GEN24 3.0			
Micro-generator technology		transformerless			
Manufacturer name		Froni	Fronius International GmbH		
Address Guenter Fronius Str 4600 Wels-Thalheim			Austria		
Tel	+43-724	2-241-0		Fax	+43-7242-241-224
E:mail	pv@fron	ius.com		Web site	www.fronius.com
			Connection Option		
Registered Car	oacitv.	3.0	kW single phase, single, split or three phase system		
use separate sh more than one	-		kW th	ree phase	
connection option.			kW tv	vo phases in three	e phase system
			kW tv	wo phases split ph	nase system

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above **Fully Type Tested** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98/NI.

and product mod		0 000/1111	
Signed	FRONUS INTERNATIONAL GABH Gonta Fronus St. 1-1/1600 Well Photherm Tel: +43/(0) 72 42/(341-0, Fax) 47 8 25	On behalf of	Fronius International GmbH

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

MATERIALS & SAFETY - R&D

TR 31361

page 2 of 11

Operating Range: This test should be carried out as specified in EN 50438 D.3.1.

Active Power shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator** (e.g. wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG **Micro-generator** the mechanical drive system may be replaced by a test bench motor.

bench motor.	
Test 1	
Voltage = 85% of nominal (195.5 V)	
Frequency = 47.5 Hz	Always connected
Power factor = 1	
Period of test 90 minutes	
Test 2	
Voltage = 110% of nominal (253 V).	
Frequency = 51.5 Hz	Always connected
Power factor = 1	
Period of test 90 minutes	
Test 3	
Voltage = 110% of nominal (253 V).	
Frequency = 52.0 Hz	Always connected
Power factor = 1	
Period of test 15 minutes	
Remark: During the tests 1, 2 and 3 the unit does no	ot disconnect, tests have been passed.

MATERIALS & SAFETY - R&D

TR 31361

page 3 of 11

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2										
Micro-generator rating per phase (rpp)		3.0	kW							
Harmonic		f Registered acity		Registered acity						
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above				
2	0.014	0.017	0.012	0.015	1.080					
3	0.016	0.020	0.020	0.025	2.300					
4	0.014	0.017	0.012	0.014	0.430					
5	0.016	0.020	0.014	0.017	1.140					
6	0.008	0.010	0.007	0.009	0.300					
7	0.016	0.020	0.008	0.010	0.770					
8	0.007	0.008	0.006	0.008	0.230					
9	0.061	0.075	0.046	0.056	0.400					
10	0.006	0.008	0.006	0.007	0.184					
11	0.023	0.028	0.038	0.046	0.330					
12	0.005	0.006	0.005	0.006	0.153					
13	0.009	0.010	0.034	0.042	0.210					
14	0.005	0.006	0.005	0.006	0.131					
15	0.018	0.022	0.032	0.039	0.150					
16	0.004	0.005	0.005	0.006	0.115					
17	0.020	0.024	0.029	0.036	0.132					
18	0.004	0.005	0.005	0.006	0.102					
19	0.014	0.017	0.026	0.031	0.118					
20	0.004	0.004	0.004	0.005	0.092					
21	0.006	0.008	0.023	0.029	0.107	0.160				

MATERIALS & SAFETY - R&D

TR 31361

page 4 of 11

22	0.004	0.005	0.004	0.005	0.084				
23	0.008	0.010	0.019	0.023	0.098	0.147			
24	0.004	0.005	0.004	0.005	0.077				
25	0.011	0.014	0.019	0.023	0.090	0.135			
26	0.004	0.005	0.004	0.005	0.071				
27	0.010	0.012	0.015	0.018	0.083	0.124			
28	0.004	0.005	0.004	0.005	0.066				
29	0.005	0.006	0.012	0.015	0.078	0.117			
30	0.004	0.005	0.005	0.006	0.061				
31	0.006	0.007	0.011	0.013	0.073	0.109			
32	0.004	0.005	0.005	0.006	0.058				
33	0.009	0.011	0.011	0.014	0.068	0.102			
34	0.004	0.005	0.005	0.007	0.054				
35	0.010	0.013	0.012	0.014	0.064	0.096			
36	0.006	0.007	0.005	0.007	0.051				
37	0.008	0.010	0.012	0.015	0.061	0.091			
38	0.005	0.006	0.006	0.007	0.048				
39	0.008	0.010	0.013	0.016	0.058	0.087			
40	0.019	0.023	0.024	0.030	0.046				
Note the b	Note the higher limits for add harmonics 21 and shows are only allowable under cortain conditions if								

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

MATERIALS & SAFETY - R&D

TR 31361

page 5 of 11

Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98/NI

Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous).

	Starti	ng		S					Running		
	d _{max}	d _c	d _(t)	d _n	nax	d _c	d _(t)	P _{st}		P _{lt} 2 ho	ours
Measured Values at test impedance	0.49	1.13	-	0.	61	1.8	-	0.29	9	0.2789	
Normalised to standard impedance	0.49	1.13	-	0.	61	1.8	-	0.29	9	0.2789)
Normalised to required maximum impedance	-	-	-	-		-	-	-		1	
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%	49	%	3.3%	3.3%	1.0		0.65	
Test Impedance	R		0.4		Ω		Х		0.25		Ω
Standard Impedance	R		0.24 *		Ω		Х		0.15 * 0.25^		Ω
Maximum Impedance	R		-		Ω		Х		-		Ω

^{*} Applies to three phase and split single phase Micro-generators.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω .

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Test start	06:15	Test end	08:15	2020-10-20
Test location		aboratories, Fronius Internationa is Str 1, A-4600 Wels-Thalheim,		

[^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

MATERIALS & SAFETY - R&D

TR 31361

page 6 of 11

Power quality – DC injection: This test should be carried out in accordance with EN 50438 Annex D.3.10										
Test power level	20%	50%	75%	100%						
Recorded value in Amps	0.0145	0.0105	0.0088	0.0086						
as % of rated AC current	0.1115	0.0807	0.0677	0.0661						
Limit	0.25%	0.25%	0.25%	0.25%						

Power Quality - Pow	Power Quality - Power factor: This test shall be carried out in accordance with EN 50538										
Annex D.3.4.1 but with	Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within ±1.5%										
of the stated level during the test.											
	216.2 V	230 V	253 V								
20% of Registered											
Capacity	1.00	1.00	1.00								
50% of Registered											
Capacity	1.00	1.00	1.00								
75% of Registered											
Capacity	1.00	1.00	1.00								
100% of Registered											
Capacity	1.00	1.00	1.00								
Power factor Limit –	>0.95	>0.95	>0.95								
leading											
Power factor Limit –	>0.98	>0.98	>0.98								
lagging	1 2100	1 2.00	1 2100								

MATERIALS & SAFETY - R&D

TR 31361

page 7 of 11

Protection – Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98/NI Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous)

Function	Setting		Trip test		"No trip tests"		
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip	
U/F	48Hz	0.5s	47.996Hz	0.539s	48.2 Hz 25 s	Confirmed	
					47.8 Hz 0.45 s	Confirmed	
O/F	52Hz	1.0s	52.003Hz	1.043s	51.8 Hz 120.0 s	Confirmed	
					52.2 Hz 0.98 s	Confirmed	

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Voltage tests: These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98/NI Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous)

Function	ion Setting		Trip test		"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
U/V stage 1	195.5V	3s	195.3V	3.046s	199.5 V 5.0 s	Confirmed	
U/V stage 2	138V	2s	137.787V	2.048s	142 V 2.5 s	Confirmed	
					134 V 1.98 s	Confirmed	
O/V	253 V	1.0s	253.75V	0.55s	249 V 5.0 s	Confirmed	
					257 V 0.45 s	Confirmed	

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

MATERIALS & SAFETY - R&D

TR 31361

page 8 of 11

Protection - Lo	oss of Main	s test: For	PV Inverter	s shall be te	ested in acco	ordance with
BS EN 62116.	Other Inver t	ters should	be tested in	accordance	e with EN 5	0438 Annex
D.2.5 at 10%, 5	5% and 100°	% of rated p	ower.			
To be carried out a	t three output p	ower levels w	ith a tolerance	of plus or minu	us 5% in Test I	Power levels.
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 seconds						
For Multi phase	Micro-gene	rators confir	m that the	device shuts	down corre	ctly after the
removal of a sing	le fuse as we	Il as operation	n of all phase	S.		
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1						
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph2						
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph3						
fuse removed						
Note for technologestablishing that the 1.0 s for these technological states and the second states are the second states and the second states are the sec	e trip occurred nologies.	d in less than (0.5 s. Maximu	m shut down t		efore be up to
Indicate additiona	al shut down t	ime included	in above resu	ults.		ms
For Inverters tes following table.	sted to BS EN	N 62116 the	following sub	set of tests	should be re	corded in the
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip Time Limit is 0.5s	242.0 ms	238.0 ms	315.8 ms	230.6 ms	228.0 ms	261.8 ms

MATERIALS & SAFETY - R&D

TR 31361

page 9 of 11

Protection - Freque	ncy change,	Vector Shift S	Stability test: This test	should be				
carried out in accordar	nce with ERE	C G98/NI Annex	A1 A.1.2.6 (Inverter cor	nnected) or				
Annex A2 A.2.2.6 (Synchronous).								
	Start	Change	Confirm no trip					

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.5Hz	+50 degrees	Confirmed
Negative Vector Shift	50.5Hz	-50 degrees	Confirmed

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous).

Ramp range Test frequency ra		Test Duration	Confirm no trip
49.0 Hz to 51.0Hz	+0.95 Hzs ⁻¹	2.1 s	Confirmed
51.0 Hz to 49.0Hz -0.95 Hzs ⁻¹		2.1 s	Confirmed

Limited Frequency Sensitive Mode – Overfrequency test: This test should be carried out in accordance with EN 50438 Annex D.3.3 Power response to overfrequency. The test should be carried out using the specific threshold frequency of 50.2 Hz and **Droop** of 4%.

Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient	
Step a) 50.00 Hz ±0.01 Hz	3003 W	50.00Hz			
Step b) 50.25 Hz ±0.05 Hz	2939 W	50.25Hz			
Step c) 50.70 Hz ±0.10 Hz	2260 W	50.70Hz			
Step d) 51.15 Hz ±0.05 Hz	1580 W	51.15Hz	3.1kW	50%/Hz	
Step e) 50.70 Hz ±0.10 Hz	2260 W	50.70Hz			
Step f) 50.25 Hz ±0.05 Hz	2938 W	50.25Hz			
Step g) 50.00 Hz ±0.01 Hz	3015 W	50.00Hz			
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient	
Step a) 50.00 Hz ±0.01 Hz	1498 W	50.00Hz			
Step b) 50.25 Hz ±0.05 Hz	1472 W	50.25Hz			
Step c) 50.70 Hz ±0.10 Hz	1131 W	50.70Hz			
Step d) 51.15 Hz ±0.05 Hz	791 W	51.15Hz	1.525kW	50%/Hz	
Step e) 50.70 Hz ±0.10 Hz	1131 W	50.70Hz			
Step f) 50.25 Hz ±0.05 Hz	1472 W	50.25Hz			
Step g) 50.00 Hz ±0.01 Hz	1502 W	50.00Hz			
Steps as defined in EN 5043	8	•	<u> </u>		

MATERIALS & SAFETY - R&D

TR 31361

page 10 of 11

_			st should be carried out in					
accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency and under state conditions.								
Test sequence Measured Active Frequency Primary power source Power Output								
Test a) 50 Hz ± 0.01 Hz	3000W	50Hz	3.1kW					
Test b) Point between 49.5 Hz and 49.6 Hz	3000W	49.55Hz	3.1kW					
Test c) Point between 47.5 Hz and 47.6 Hz	3000W	47.55Hz	3.1kW					
NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes								

Re-connection timer.								
Test should	Test should prove that the reconnection sequence starts after a minimum delay of 60 s for							
restoration o	restoration of voltage and frequency to within the stage 1 settings of Table 2.							
Time delay	Time delay Measured Checks on no reconnection when voltage or frequency is							
setting	delay		brought to just outside stage 1 limits of table 2.					
60.0s	86s		At 257 V	At 191.5 V	At 47.9Hz	At 52.1Hz		
Confirmation that the Micro-generator		Confirmed	Confirmed	Confirmed	Confirmed			
does not re-connect.								

	connected)	and Anney	A A A A A A	١ (٥ ١				
	G98/NI Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).							
gnetic output		For Inverter	output					
Symbol	Value	Time after fault	Volts	Amps				
i		20ms	17.4	51.6				
А		100ms	15.5	23.8				
l _k		250ms	15.2	15.4				
i _{DC}		500ms	15.11	11.1				
X/ _R		Time to trip	0.09	In seconds				
	gnetic output Symbol i p A I k i DC	i A I C C C C C C C C C C C C C C C C C C	Interest agent ag	In a segmetic output symbol symbol symbol segmetric output symbol segment segment symbol symbol segment symbol segment symbol segment symbol symbol segment symbol segment symbol segment symbol symbol segment symbol symbol segment symbol symbol segment symbol s				

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface.	Yes
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98/NI Annex A1 A.1.3.6 (Inverter connected).	NA
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	

MATERIALS & SAFETY - R&D TR 31361 page 11 of 11

Additional comments			

@BCL@2000420D.doc

Backup: Primo GEN24 G98NI